Exercise 13

Let the point $s_{0}=\alpha+i \beta(\beta \neq 0)$ be a pole of order m of a function $F(s)$, which has a Laurent series representation

$$
F(s)=\sum_{n=0}^{\infty} a_{n}\left(s-s_{0}\right)^{n}+\frac{b_{1}}{s-s_{0}}+\frac{b_{2}}{\left(s-s_{0}\right)^{2}}+\cdots+\frac{b_{m}}{\left(s-s_{0}\right)^{m}} \quad\left(b_{m} \neq 0\right)
$$

in the punctured disk $0<\left|s-s_{0}\right|<R_{2}$. Also, assume that $\overline{F(s)}=F(\bar{s})$ at points s where $F(s)$ is analytic.
(a) With the aid of the result in Exercise 6, Sec. 56, point out how it follows that

$$
F(\bar{s})=\sum_{n=0}^{\infty} \overline{a_{n}}\left(\bar{s}-\overline{s_{0}}\right)^{n}+\frac{\overline{b_{1}}}{\bar{s}-\overline{s_{0}}}+\frac{\overline{b_{2}}}{\left(\bar{s}-\overline{s_{0}}\right)^{2}}+\cdots+\frac{\overline{b_{m}}}{\left(\bar{s}-\overline{s_{0}}\right)^{m}} \quad\left(\overline{b_{m}} \neq 0\right)
$$

when $0<\left|\bar{s}-\bar{s}_{0}\right|<R_{2}$. Then replace \bar{s} by s here to obtain a Laurent series representation for $F(s)$ in the punctured disk $0<\left|s-\overline{s_{0}}\right|<R_{2}$, and conclude that $\overline{s_{0}}$ is a pole of order m of $F(s)$.
(b) Use results in Exercise 12 and part (a) to show that

$$
\operatorname{Res}_{s=s_{0}}\left[e^{s t} F(s)\right]+\underset{s=\bar{S}_{0}}{\operatorname{Res}}\left[e^{s t} F(s)\right]=2 e^{\alpha t} \operatorname{Re}\left\{e^{i \beta t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m}}{(m-1)!} t^{m-1}\right]\right\}
$$

when t is real, as stated just before Example 1 in Sec. 89 .

Solution

Part (a)

The result of Exercise 6 in Sec. 56 says that

$$
\text { if } \quad \sum_{n=1}^{\infty} z_{n}=S, \quad \text { then } \quad \sum_{n=1}^{\infty} \overline{z_{n}}=\bar{S} .
$$

We have

$$
F(s)=\sum_{n=0}^{\infty} a_{n}\left(s-s_{0}\right)^{n}+\frac{b_{1}}{s-s_{0}}+\frac{b_{2}}{\left(s-s_{0}\right)^{2}}+\cdots+\frac{b_{m}}{\left(s-s_{0}\right)^{m}}
$$

when $0<\left|s-s_{0}\right|<R_{2}$. Take the complex conjugate of both sides.

$$
\overline{F(s)}=\overline{\sum_{n=0}^{\infty} a_{n}\left(s-s_{0}\right)^{n}+\frac{b_{1}}{s-s_{0}}+\frac{b_{2}}{\left(s-s_{0}\right)^{2}}+\cdots+\frac{b_{m}}{\left(s-s_{0}\right)^{m}}}
$$

It is assumed that $\overline{F(s)}=F(\bar{s})$.

$$
\begin{aligned}
F(\bar{s}) & =\overline{\sum_{n=0}^{\infty} a_{n}\left(s-s_{0}\right)^{n}+\frac{b_{1}}{s-s_{0}}+\frac{b_{2}}{\left(s-s_{0}\right)^{2}}+\cdots+\frac{b_{m}}{\left(s-s_{0}\right)^{m}}} \\
& =\sum_{n=0}^{\infty} a_{n}\left(s-s_{0}\right)^{n}+\frac{\overline{b_{1}}}{s-s_{0}}+\overline{\frac{b_{2}}{\left(s-s_{0}\right)^{2}}}+\cdots+\frac{b_{m}}{\left(s-s_{0}\right)^{m}}
\end{aligned}
$$

Apply the result from Exercise 6 in Sec. 56 here.

$$
\begin{aligned}
F(\bar{s}) & =\sum_{n=0}^{\infty} \overline{a_{n}\left(s-s_{0}\right)^{n}}+\overline{\frac{b_{1}}{s-s_{0}}}+\frac{\overline{b_{2}}}{\left(s-s_{0}\right)^{2}}+\cdots+\frac{\overline{b_{m}}}{\left(s-s_{0}\right)^{m}} \\
& =\sum_{n=0}^{\infty} \overline{a_{n}} \overline{\left(s-s_{0}\right)^{n}}+\frac{\overline{b_{1}}}{\overline{s-s_{0}}}+\frac{\overline{b_{2}}}{\overline{\left(s-s_{0}\right)^{2}}}+\cdots+\frac{\overline{b_{m}}}{\overline{\left(s-s_{0}\right)^{m}}} \\
& =\sum_{n=0}^{\infty} \overline{a_{n}}\left(\overline{s-s_{0}}\right)^{n}+\frac{\overline{b_{1}}}{\overline{s-\overline{s_{0}}}}+\frac{\overline{b_{2}}}{\left(\overline{s-s_{0}}\right)^{2}}+\cdots+\frac{\overline{b_{m}}}{\left(\overline{s-s_{0}}\right)^{m}}
\end{aligned}
$$

Therefore,

$$
F(\bar{s})=\sum_{n=0}^{\infty} \overline{a_{n}}\left(\bar{s}-\overline{s_{0}}\right)^{n}+\frac{\overline{b_{1}}}{\bar{s}-\overline{s_{0}}}+\frac{\overline{b_{2}}}{\left(\bar{s}-\overline{s_{0}}\right)^{2}}+\cdots+\frac{\overline{b_{m}}}{\left(\bar{s}-\overline{s_{0}}\right)^{m}}
$$

when $0<\left|\bar{s}-\overline{s_{0}}\right|<R_{2}$. Now replace \bar{s} with s to obtain a Laurent series representation for $F(s)$ in the punctured disk $0<\left|s-\overline{s_{0}}\right|<R_{2}$.

$$
F(s)=\sum_{n=0}^{\infty} \overline{a_{n}}\left(s-\overline{s_{0}}\right)^{n}+\frac{\overline{b_{1}}}{s-\overline{s_{0}}}+\frac{\overline{b_{2}}}{\left(s-\overline{s_{0}}\right)^{2}}+\cdots+\frac{\overline{b_{m}}}{\left(s-\overline{s_{0}}\right)^{m}}
$$

Therefore, $\overline{s_{0}}$ is a pole of order m.

Part (b)

From Exercise 12 we know that if $F(s)$ has a pole at $s=s_{0}$ of order m, then

$$
\operatorname{Res}_{s=s_{0}}\left[e^{s t} F(s)\right]=e^{s_{0} t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}\right] .
$$

From part (a) we know that $F(s)$ also has a pole at $s=\overline{s_{0}}$ of order m.

$$
\operatorname{Res}_{s=\bar{s}_{0}}\left[e^{s t} F(s)\right]=e^{\overline{s_{0}} t}\left[\overline{b_{1}}+\frac{\overline{b_{2}}}{1!} t+\cdots+\frac{\overline{b_{m-1}}}{(m-2)!} t^{m-2}+\frac{\overline{b_{m}}}{(m-1)!} t^{m-1}\right]
$$

m and t are real, so the complex conjugate extends over the terms that include them.

$$
\begin{aligned}
& =e^{\overline{s_{0} t}}\left[\overline{b_{1}}+\frac{\overline{b_{2}}}{1!} t+\cdots+\overline{\frac{b_{m-1}}{(m-2)!} t^{m-2}}+\overline{\frac{b_{m}}{(m-1)!} t^{m-1}}\right] \\
& =\overline{e^{\overline{s_{0} t}}\left[\overline{b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}}\right]} \\
& =e^{s_{0} t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}\right]
\end{aligned}
$$

Thus, the sum of the two residues is

$$
\begin{aligned}
\operatorname{Res}_{s=s_{0}}\left[e^{s t} F(s)\right]+\operatorname{Res}_{s=\bar{s}_{0}}\left[e^{s t} F(s)\right]=e^{s_{0} t}[& b_{1}
\end{aligned}+\frac{\left.\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}\right]}{} \begin{aligned}
& \frac{e^{s_{0} t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}\right]}{}
\end{aligned}
$$

Make use of the fact that $z+\bar{z}=2 \operatorname{Re} z$.

$$
\operatorname{Res}_{s=s_{0}}\left[e^{s t} F(s)\right]+\underset{s=\bar{S}_{0}}{\operatorname{Res}}\left[e^{s t} F(s)\right]=2 \operatorname{Re}\left\{e^{s_{0} t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}\right]\right\}
$$

Substitute $s_{0}=\alpha+i \beta$ on the right side.

$$
\begin{aligned}
& =2 \operatorname{Re}\left\{e^{(\alpha+i \beta) t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}\right]\right\} \\
& =2 \operatorname{Re}\left\{e^{\alpha t} e^{i \beta t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m-1}}{(m-2)!} t^{m-2}+\frac{b_{m}}{(m-1)!} t^{m-1}\right]\right\}
\end{aligned}
$$

Since α and t are real, $e^{\alpha t}$ can be pulled in front of Re. Therefore,

$$
\underset{s=s_{0}}{\operatorname{Res}}\left[e^{s t} F(s)\right]+\underset{s=\overline{s_{0}}}{\operatorname{Res}}\left[e^{s t} F(s)\right]=2 e^{\alpha t} \operatorname{Re}\left\{e^{i \beta t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{b_{m}}{(m-1)!} t^{m-1}\right]\right\} .
$$

